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Abstract

Chemically active saturated clays containing several cations are considered in a two-phase framework. The solid
phase contains the negatively charged clay particles, absorbed water and ions. The fluid phase, or pore water, contains
free water and ions. Electroneutrality is ensured in both phases, which gives rise to electrical fields. Water and ions can
transfer between the two phases. In addition, a part of free water diffuses through the porous medium. A global un-
derstanding of all phenomena, deformation, transfer, diffusion and electroneutrality, is provided. Emphasis is laid on
the electro-chemo-mechanical constitutive equations in an elastic—plastic setting. Elastic chemo-mechanical coupling is
introduced through a potential, in such a way that the tangent elastic stiffness is symmetric. Material parameters needed
to estimate the coupling are calibrated from specific experiments available in the recent literature. The elastic—plastic
behaviour aims at reproducing qualitatively and quantitatively typical experimental phenomena observed on natural
clays during chemical and mixed chemo-mechanical loadings, including chemical consolidation and swelling already
described in Int. J. Solids Structures (39 (10), 2773-2806) in the simpler context of Na-Montmorillonite clays. Crucially,
the successive exposure of a clay to pore solutions with chemical content dominated by a cation already present in the
clay or quasi-absent leads to dramatically different volume changes, in agreement with experimental data.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Swelling of clayey soils is an important factor in their engineering, but the accurate prediction of its
amount and its consequences have been eluding engineers for several decades. The main reason for this is
usually seen in a non-mechanical character of the phenomena involved and difficulties in linking them to
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soil mechanical analyses. Swelling is critically involved in such problems as borehole stability in petroleum
extraction, liner and buffer stability in containment of nuclear or hazardous contaminants in environmental
geotechnology.

In this paper, we will focus on chemically induced swelling and collapse of heteroionic clays, which
constitute the majority of natural clays and a great part of engineered clays. In a preliminary paper (LHG,
2002), ! we have addressed swelling of homoionic clays: these clays rarely occur in natural conditions, but
they can be manufactured for specific industrial applications. Homoionic clays serve also as a good material
model for some preliminary studies.

The microstructure, and especially the organization of water in different pore spaces, is very much the
same in both homoionic and heteroionic clays; it has been described in detail in LHG (2002). In both cases,
swelling arises as a result of chemical or electrochemical disequilibrium of a structural unit comprising:

an amorphous substructure of quasi-crystals (clusters) of the parallel clay mineral platelets,
absorbed water within the quasi-crystals and adsorbed water enveloping the substructure,
the free pore water, and critically,

ions in the interplatelet space and in the free water.

Chemical swelling here will cover both crystalline swelling due to absorption of water into interlamellar
space and osmotic swelling due to adsorption of water to the external surface, and no distinction will be
made between adsorbed and absorbed water. The amorphous structure is conceptualized as being wrapped
in a semi-permeable membrane. This membrane serves as a gate-keeper for ion and water transfer between
the free pore water and the clusters including the absorbed water. Unlike in biological tissues, such a
membrane is not a physical object, rather it is a separation across which the two types of water fractions
exchange cations at a certain rate.

1.1. Previous mechanical approaches

The approach to modeling of the mechanical aspects of clay swelling usually depends on the application
in hand and specific processes involved.

In petroleum engineering, stability of the wellbore can be improved by circulating a mud that creates an
osmotic membrane impermeable, at least partially depending on the chemical composition of the mud, to
salts: if py,, p; are the pressures and x,,, x; the salt molar fractions of the mud applied to the wellbore and of
the rock respectively, water flow will cease when the chemical potentials equilibrate, which implies the
differences p, — p. and x,, — x; to be of the same sign.

For a sufficient difference in salinity, the pore pressure in the rock at equilibrium may be forced to be
smaller than its initial value, Charlez et al. (1998). Simulations of this phenomenon have been presented by
Sherwood (1994a,b), using a constitutive behaviour referred to as inert, Sherwood (1993). The problem of
hydration and dehydration of rocks has been addressed by Heidug and Wong (1996). However, the above
works do not treat separately transport and transfer phenomena, that is, they do not recognize that the
changes of mass are due to both a transfer (or reactive) contribution and a diffusive contribution. This
distinction is necessary to provide elastic constitutive equations that describe coupling effects in swelling
clays, and it will be stressed in the present formulation.

Ma and Hueckel (1992), Hueckel (1992a,b) proposed to treat clays exposed to thermal and chemical
loads as a two phase mixture, with absorbed water being a part of solid phase, and an inter-phase transfer
to model its absorption and desorption process. Bennethum and Cushman (1999) and Murad (1999) have

' LHG (2002) is an abbreviation for Loret et al. (2002).
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addressed the transfer of water into interlamellar space in clays through a two- or three-spatial scale
modeling using homogenization schemes. This type of approach entails a substantial number of constitutive
assumptions, requiring sophisticated identification procedures. A multi-constituent mixture, involving
charged species and thermal effects, has been suggested by Huyghe and Janssen (1999), but this general
framework does not account for the special configuration of clays that will be developed in this work.

1.2. A model for electro-chemo-mechanical couplings

The model developed here to account for the electrical and chemical interactions with the mechanical
behaviour of clays capitalizes upon a previous analysis described in LHG (2002) where electrical effects
were disregarded.

Saturated clay is considered as a porous deformable continuum consisting of two overlapping phases,
each phase containing several species. A kinematic criterion is used for phase identification and the ab-
sorbed water is attributed to the solid phase based on the affinity of their velocities. Capital in the modeling
of deformable porous media is the coupling of the deformation of pore space in soil and the concomitant in-
or out-flow of pore liquid. In chemically sensitive soils, this coupling is additionally affected by the presence
of charged species in both phases. Thus, mechanics of the medium, e.g. balance of momentum, is con-
sidered at the phase level, whereas chemical processes, i.e. balances of masses, concern the species. The link
between the two levels is obtained through energetic considerations. Whether or not the electro-chemical
potentials are in equilibrium, water absorbed between the clay platelets can transfer into free pore water, or
conversely, depending on the chemical composition of the clay and pore water phases, and on the me-
chanical conditions in terms of volume and pressure (Fig. 1).

The electro-chemo-mechanical elastic—plastic constitutive equations involve the species of the solid phase
(the clay platelets) but treat the fluid phase as a whole. The species of the latter only diffuse through the
porous medium, obeying generalized Darcy’s diffusion equations. The transfer of absorbed water and
species between the solid and fluid phases involves a fictitious membrane surrounding the clay platelets,
which may be permeable to the chemical species at various degrees. For the sake of simplicity, all chemical
species that appear in the present analysis, except clay particles, can cross the membrane. Electroneutrality
is required in each of the two phases, giving rise to an electrical field.

The theoretical framework is illustrated by simulations of typical phenomena observed during labora-
tory experiments: the change of chemical composition of pore water has, due to the electro-chemo-
mechanical couplings, consequences on the mechanical state of the porous medium. Parameters involved in
the model are calibrated. Mechanical, chemical and chemo-mechanical loading and unloading paths are
considered. The basic behaviour described for neutral species in LHG (2002) still holds for purely me-
chanical loadings. On the other hand, substantial differences appear for chemical loadings and unloadings.
Increase of the salinity of pore water at constant confinement leads to a volume decrease, so-called chemical
consolidation. Subsequent exposure to a distilled water solution displays swelling. For pure Na-Montmo-
rillonite clays, however, the latter is smaller than the chemical consolidation so that the chemical loading
cycle results in a net contractancy whose amounts increases with the confinement. The situation is quite
different here as the influence of ionic species on mechanical properties vary greatly from one species to the
other. Replacement of a Na-dominated pore solution by distilled pore water produces a quite different
swelling strain than if the replacement were made using a K-dominated pore solution, Di Maio and Fenelli
(1997). Of course, the details of the initial ionic content of the clay clusters is of capital importance in these
processes.

With respect to previous publications, the key feature of the present analysis is that the constitutive
model developed is more than qualitative. It embodies not only elasticity but also elasto-plasticity which is
a necessary requirement to simulate the key features of the chemo-mechanical behaviour of swelling clays,
as highlighted by experimental data which have been recently published. On the other hand, as a first
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Fig. 1. Schematic of a chemo-mechanical experiment. The pore water is in contact with a large recipient whose chemical composition is
controlled. In the sample submitted to a variable mechanical load in terms of stress or strain, schematized here by P, the solid phase
(clay clusters with absorbed water and ions) is in contact with the fluid phase (pore water). Water and ions absorbed in the solid phase
are exchanged with their counterparts in pore water depending on their respective contents and on mechanical conditions.

attempt, only two cations are assumed to be present in the clay clusters. While natural clays contain cer-
tainly more cations, their relative influence on the mechanical response of the clays certainly depends on the
electrolyte filling the pore space. Therefore, extension of the model to clays with many ionic species requires
experimental data to be available.

Although attention is paid mainly to the elastic—plastic constitutive equations, the latter are shown to be
embedded in a general formulation where both transfer and diffusion processes can be considered in initial
and boundary value problems to be treated through the finite element method in a work under develop-
ment, Gajo and Loret (2002).

Notation: Compact or index tensorial notation will be used throughout this work. Tensor quantities are
identified by boldface letters. I = (J;;) is the second order identity tensor (Kronecker delta). Symbols ‘- and
> between tensors of various orders denote their inner product with single and double contraction re-
spectively. tr denotes the trace of a second order tensor, dev its deviatoric part and div is the divergence
operator.

2. The two-phase framework
2.1. General framework

We consider a two-phase porous medium. Each phase is composed of several species:
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o the solid phase S contains five species

clay particles denoted by the symbol ¢
absorbed and adsorbed water w (2.1)
ions sodium, potassium, chloride Na', K*, CI”

o the fluid phase W contains four species

{pore water denoted by the symbol w

ions sodium, potassium, chloride Na®, K", CI” (2.2)

The clay clusters are surrounded by a fictitious membrane which is a priori impermeable to clay particles
only: the mass of clay in the solid phase, obtained by aggregation of clay clusters, is constant,

m.s = constant. (2.3)

However, the membrane could serve also as a barrier for anions or non-exchangeable cations. As a rule, a
species in a phase is referred by two indices, the index of the species and the index of the phase. We shall
introduce several sets of species with specific properties, namely:

species in the solid phase S = {w,Na™ K", Cl",c};

species in the fluid phase W = {w,Na™, K", Cl" };

species that can cross the membrane, S~ = W~ = W = {w,Na", K", Cl" };
cations in the solid phase S* = {Na*, K"}.

The main assumptions which underly the two-phase model follow the strongly interacting model of
Bataille and Kestin (1977), namely,

(H1) For each species, only the mass balance is required, but not the momentum balance;

(H2) Mass balance for each phase is obtained via mass balances of the species it contains. Momentum bal-
ances are required for each phase.

(H3) The velocity of any species in the solid phase is that of the latter, vi,5 = vs, Vk € S.

(H4) In the fluid phase, pressure is assumed to be uniform across all species, pyy = pw, Vk € W, but each
species k is a priori endowed with its own velocity v, .

(HS5) Electroneutrality is required in both phases. In the solid phase, negatively charged clay particles re-
quire the presence of the cations.

In the solid phase, the pressures attributed to the phase and to the species in that phase are not set a
priori as equal. This is motivated by the role that absorbed water, which is one of the solid phase species,
may have in transmitting a part of the total stress.

2.2. Basic entities

The incremental work done by the total stress ¢ in the incremental strain de of the solid phase and by the
electro-chemical potentials 1§, during the addition/subtraction of mass dmyx to/from the species k of the
phase K is

OV =06 :0e+ Z Wi O . (2.4)

k.K

Summation extends to all k € S~ = W< = W and K = S, W, since the contribution due to the clay particles
vanishes due to (2.3). The electro-chemical potentials [unit: m?/s?] are mass-based and the m’s are the
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fluid-mass contents per unit initial volume of the porous medium [unit: kg/m?]. Since the volume of the solid
phase is also the volume of the porous medium, tr € is the relative volume change of both these quantities.

Another convention is to measure the amount of species by the number of moles per initial volume and
to use mole-based (electro-)chemical potentials,

~ M ~
g = m" i (2.5)

with m,((M) molar mass of species &, e.g. m{M = 18 g. The constitutive equations will be phrased in terms of
mass-based (electro-)chemical potentials, with the mass-contents as independent variables. However, data
are available for mole-based free enthalpies of formation. Therefore, use will be made of the entities best
appropriate to the context.

The classic formula of the chemical potential gy of the species k in the fluid phase W, e.g. Haase (1990,
Chapter 2-5); Kestin (1968, Chapter 21), identifies a purely mechanical contribution which involves

o the intrinsic pressure of the fluid })hase Pw,
o the molar volume of the species v,

and a chemical contribution which accounts for the molar fraction x> of the species k in phase W. For
charged species in presence of the electrical field ¢” , the electro-chemical potential g4y involves in addition
an electrical contribution. Soluble species develop also a configurational energetic property measured by
their free enthalpy of formation g,,. In integral form,

e =mMus, =g, + / v dpl, + RTLnxyy + 57 ", ke W. (2.6)

The integration above is performed from a reference state, say (py = py, xiw = 1,¢" = 0), to the current
state. Therefore, g, serves as the mole-based value of the chemical potential in the reference state. As for
the species within the solid phase S, the mechanical contribution to the electro-chemical potential of species
k involves its intrinsic mean-stress pys,

g8 =mMuss = g% + / oMW dpls + RTLnxs + . F¢°, keES. (2.7)

In these formulas, R = 8.31451 J/mol/°K is the universal gas constant, and 7" (°K) the absolute temperature.
The electrical contribution to the mass-based chemical potentials will be introduced through the constant &,
that involves, besides the molar mass m,(fM), the valence {, and Faraday’s equivalent charge # = 96,487 C/

mol,

&= kew,s. (2.8)

By convention, {, = 0, and so &, = 0.

The density of absorbed water is reported to be non-uniform between the platelets and to be slightly
higher than that of free water. However, some algebraic simplifications arise if we assume the density of any
species to be one and the same in both solid and fluid phases,

Prs = Prws k€ST =W, (29)

One of the principal tasks in building a theory of deformable porous media is to link the change of pore
space to the mass of pore liquid flowing in or out of the representative volume element. This description is
more complex when reactions take place, resulting in generation or disappearance of mass of some species.
We shall define below different measures of mass changes and volume changes that will be used in the
constitutive equations.
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The molar fraction x;x of the species k in phase K is defined by the relative ratio of the mole number Ny
of that species within the phase K, namely

Nix

Xk — =< -
EIEKNIK

Summation extends to all species in the phase K. By their definition, the molar fractions satisfy the closure
relation

d xx=1, K=SW. (2.11)

kek

(2.10)

Let the initial volume of the porous medium be ¥, and let ¥ = V(¢) be its current volume. The current
volume of the species k of phase K is denoted by Vix and the current volume of phase K by Vx. Then the
volume fraction of the species k of phase K is defined as

7
e =5 1)
while the volume fraction of phase K is
Vi .
nK:—K:anK with ns +ny = 1. (213)
v kek

On the other hand, volume contents vy for the species k of phase K and vg for the phase K refer to the initial
total volume J;, namely,
Vik 4 Vk 4
Wk =— =Mx—, Ug=—=0ng—. 2.14
kK Vo kK Vo K Vo K V() ( )
The mass contents myg per unit initial volume ¥, of the species k of phase K, and my of the phase K, are
obtained from the volume contents vy and intrinsic mass densities p;:
M Nigm™
Mg = —— = ————

M,
7 = PV (DO summation on k,K), mg = 7(1: = kaK~ (2.15)

kek

The apparent density of the species k in the porous medium, namely p, and the apparent density of the
phase K, namely pX, are,

o = nxpx  (no summation on k,K), pX = ZpkK. (2.16)
kek

With (2.15), the molar fractions x;x can be expressed in terms of the mass-contents

mkk/m,({M)
> ek Mk [my
For the record, let us note the partial derivative,
Oy,
K YK (g —xw), k1 €K. (2.18)

Omy  my

The molar volume v,%) and molar mass m,(fM) of the species k of phase K are linked by the intrinsic density
Pk

m,((M) = pka,(f,\f) (no summation on £, K), (2.19)
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so that, in incremental form, the mechanical contribution to the mass-based potential is dpy-/p,y for the
species k of the fluid phase and &p;s/p,s for the species k of the solid phase. Note that, if the densities are
assumed to be independent of the phases, Eq. (2.9), so do the molar volumes. The molar volume of the fluid
phase is

K ) (2.20)

kew

We will also need the concentrations which are the densities referred to the fluid phase rather than to the
porous medium, namely

mass of species k of fluid phase My P gy

= : = , keWw. 2.21
Cuw volume of fluid phase Vi ny Uy < ( )
From (2.20) and (2.21) follows
M) M)
N, .
oy = —k T _ m’;vl) xur, k€W (nosummation on k). (2.22)

v =
Us/V)ZleWN/W U(W

An additional phase entity of physical importance in electrolytes is the electrical density: in phase K, Ik is
defined as

F 14
Iy = 7 Z LN = 70 Z Eemmy . (2-23)

kek kek

The last equality is due to the definition (2.8) and to the definition (2.15). The fulfillment of electroneutrality
in phase K can be expressed in various forms, e.g.

I =0= > L =0 > [Ny =0. (2.24)

kek kek

The electroneutrality condition restricts the minimal admissible values of the molar fractions of the ab-
sorbed cations, especially when the pore solution is distilled water. Then at equilibrium, the molar fraction
of absorbed water overweights the other molar fractions. However, electroneutrality implies

{NaXNas + (xxks = X = —{oxes — Laxas > 0. (2.25)

Therefore, in the plane (xn.s,¥ks), the triangle defined by the points (0,0), (X/{na,0) and (0,X/{x) is in-
accessible, see Fig. 2.

2.3. The Gibbs—Duhem relation

For a fluid phase, the Gibbs—Duhem relation provides the fluid pressure py in terms of the chemical
potentials of the species ;;, namely Haase (1990, Chapter 1-13). Using (2.22), the pressure is expressed in
terms of the electro-chemical potentials as,

Spw =Y _ cuwdisy, — Iel5¢W. (2.26)
kew nw

This relation is easy to retrieve from the definitions above by forming a linear combination of the chemical

potentials (2.6) that eliminates the chemical contribution via (2.11); the result follows by using successively

(2.19), (2.20) and (2.22). The last term in (2.26) is kept for the sake of generality but it vanishes for an

electrically neutral fluid phase, Eq. (2.24).
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Fig. 2. Due to electroneutrality, the molar fractions of the cations are excluded from a triangular zone adjacent to the origin, Eq. (2.25).
Some material properties, like the elastic compliance x, are interpolated from the molar fractions of the cations, taking the Na-plane,
i.e. xxgs = 0, and K-plane, i.e. xn,5 = 0, as references.

In order to define the mechanical constitutive equations of the porous medium, we will need to isolate
the electro-chemical effects in pore water. For that purpose, following Heidug and Wong (1996), we define
the electro-chemical energy per current unit volume of the fluid phase through its differential

I
Sy =Y sy deww — 6(—W) ", (2.27)
kew w
which, via the Gibbs—Duhem relation (2.26), can be integrated, up to a constant, to yield
ec Ie
Uy = e ——— " — pw. (2.28)
kew w

Thus, the electro-chemical energy of the fluid phase per unit initial volume of porous medium is, using
(2.21),

Vv e vV
Yy = 'ﬂw% = Yyvy = ];.ukwmkW - VOIeW¢W — Pwiw. (2.29)
Due to the Gibbs—-Duhem relation (2.26), the differential ¥, simplifies to
SWW = Z u;f,,,5mkW — d)W Z kamkW —pWSUW. (230)
kew kew

Let us reiterate that the coefficients of ¢" in (2.26)—(2.30) vanish when electroneutrality (2.24) is required in
the fluid phase.

2.4. Incompressibility constraint

A situation of particular interest arises when all species are incompressible,
dpix =0, VK K. (2.31)
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Then, there exists a relation between the set of variables {€, vy, {mys,k € S7}}. Due to a simple extension of
a result in Appendix A of LHG (2002), the increment of fluid volume content can be expressed as,
3
Suy = dtre — Y (2.32)

keS— Pks

3. Elastic constitutive equations

The absorption and desorption of water and ionic species to/from the solid phase introduce electro-
chemo-mechanical couplings. On the other hand, the mere presence of ions in the water phase does not
affect directly the mechanical behaviour of the porous medium, they just flow through. Their amount is
governed by an equation of mass conservation and a flow equation. Therefore, to develop the electro-
chemo-mechanical constitutive equations, we will treat the fluid phase as a whole and, temporarily ignore
its chemical composition. Thus constitutive equations are provided for the following variables:

e a stress—strain couple attached to the mechanical state of the solid phase, namely (o, €);

e a pressure-volume couple attached to the mechanical state of the fluid phase, namely (pw,vw);

e as many couples of (electro-)chemical potential-mass content as there are species that can cross the
membrane, namely (4, mys), k € S7.

Incompressibility of the species reduces the number of unknowns and equations by one. The electrical
field difference ¢° — ¢" appears as a Lagrangian associated to the constraint represented by the electro-
neutrality condition; one may pose formally ¢” = 0 and then Wy = Wy, Yk € W.

3.1. The global picture: deformation, mass transfer, diffusion and electroneutrality

The change of mass of each species is a priori due to both mass transfer, i.e. physico-chemical reaction,
and diffusion, namely

d

dm ) - o
6;(1( — g’,’,lllzjéic:uve + g mi[l{ffusnve. (3 1)
In practice, the changes in the species of the solid phase are purely reactive, namely by transfer, through the
membrane, of water and ions between the solid and fluid phases. On the other hand, the species of the fluid
phase may also undergo mass changes by transport (diffusion) from/to the outside of the representative
elementary volume, i.e.

O iffusi .

amg;(ffuswe — _d1VMkK7 (32)
where My, is the mass flux of the species k of phase K through the solid, namely,

MkK = pkK(ka — Vs)‘ (33)

Due to assumption (H3), only the fluxes of species of the fluid phase are non-zero. dmjs¥¢ /3¢, abbreviated
to p* in the sequel, is the rate of transfer of mass density towards the species k of phase K. Since this
transfer concerns a single species, then

P+ =0, Vhkes=w". (3.4)
In the absence of thermal effects, starting from the statements of balance of mass for each species, and of
momentum and energy for the phases, e.g. Eringen and Ingram (1965), the Clausius—Duhem inequality for
a mixture as a whole can be cast in the following form,
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8D = —3¥ +0:8e— Y div(uzMy)dt > 0. (3.5)
kK

Using (3.1), (3.2), 8D may advantageously be rewritten in a form that highlights mechanical, transfer and
diffusion contributions, namely,

0D = 3% +6:8e+ Yy e (dmux — p*81) = > Vil - Migdt > 0. (3.6)
kK kK

Consequently, the Clausius—-Duhem inequality can be viewed as the sum of three contributions 6D =
dD| + 0D, + 0Ds, of work, mass transfer and diffusion, which will be required to be positive individu-
ally,

0D = —0¥ +0:0e+ ), , 15%0mx =0,

8Dy /8t = — 3 e (s — 135y )P =0, (3.7)
OD3 /0t = =\ VIS - Mpy = 0.

The chemo-hyperelastic behaviour will be constructed in order for the first term 8D, to exactly vanish.
Observe that, due to electroneutrality, the electrical field does not work. Then the electro-chemical po-
tentials in 8D; can be replaced by the chemical potentials:

D) = —8Y + 6 : e+ Y fydmix = 0. (3.8)
kK

Consequently, the constitutive relations do not depend directly on the electrical field. Satisfaction of the
second and third inequalities motivates generalized transfer equations and generalized diffusion equations
respectively, as detailed in Gajo and Loret (2002). Transfer equations can readily be read off 8D, while
diffusion equations require some rewriting of D5 that highlights specific conjugate flux-force couples. If not
neglected, body force and acceleration terms would appear in 6Ds.

3.2. Dependent and independent variables

In view of extension to the elastic—plastic behaviour, generalized strains will henceforth be denoted by a
superscript el. Instances are strains, volume and mass contents, number of moles. Later, these entities will
be decomposed into an elastic, or reversible, part and a plastic, or irreversible, part. Given a reference state,
and a process which is reversible from that reference state to the current state, the elastic, or reversible, part
of each of above entities is by convention equal to the total entity.

When the behaviour is elastic, the energy per unit initial volume of porous medium 7 = ¥ — ¥ can
be viewed as the elastic energy of the porous medium for which the electro-chemical effects in the fluid
phase are disregarded. It depends on the restricted set of independent variables * {e,vS}, {mSk, k € S7}};
indeed, with the work definition (2.4) and (2.30) and accounting for electroneutrality, its differential sim-
plifies to

3N =6 : 5 + pydif) + Z Lys OIS (3.9)
keS—
From this total differential emerge constitutive equations for the dependent variables {a, py, {15,k € ST }}
in terms of the independent variables {€¥,v%, {m¢L, k € S~}} in the following format

2 Notice that only the arguments that vary during loadings are listed; for example, since the mass of clay is constant inside the solid
phase, its influence is not shown explicitly in the list of arguments although it is tacitly assumed; this is why the superscript el is used on
top of the above energies.
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GWeI aWel GWeI _
G:F, pW:W’ ,leS:a—%7 keS™. (310)

Alternative choices in the sets of independent and dependent variables can be postulated by partial or total
Legendre transforms of %'

3.3. Incompressible species

The formulation is simplified when all species are incompressible. We shall adopt {e?, {m\,k € S~}} as
independent variables and then the increment of elastic fluid volume content is given by (2.32), since we
require the incompressibility condition to hold in both the elastic and elastic—plastic regimes. Hence, 57,
Eq. (3.9), becomes

S =58+ > Tsdmi, (3.11)
keSe
where we have introduced Terzaghi’s effective stress @, and the effective chemical potentials i,
G=o+ppl, T =g LY, ke S (3.12)
kK

The constitutive relations take the form,

aWel 6"//61
c=—7+ s ==, keS7. 3.13
c aeel ’ Has am% ’ € ( )

If we assume that transfer does not alter density, Eq. (2.9), equilibrium of the chemical potentials, i.e.
Wes = Wy, 18 equivalent to equilibrium of the effective chemical potentials, i.e. fiz = Iiy. Of course,
equilibrium applies only for species that can cross the membrane.

3.4. Logarithmic isotropic hyperelasticity

Experimental data over a large range of stresses show that the elastic moduli of soils depend on the stress
state. A usual approximation linked to the Cam—Clay models consists in assuming the elastic strain to be
proportional to the logarithm of the mean-effective stress. Bolt (1956) has shown the influence of the
chemical composition of pore water on the isotropic rebound (unloading) curves from high stresses: in the
plane Lnp-void ratio e, they are almost linear trajectories emanating from a restricted a zone with a very
narrow range of void ratios. In our formulation, a constant chemical composition of the pore water is
equivalent, if the pore pressure is constant, to a constant chemical potential of any species in fluid phase,
and if the experiment is performed sufficiently slowly, to a constant chemical potential of any species that
can cross the membrane. Thus, one would be lead a priori to use the effective stress and chemical potentials
as primary variables. However, the formulation is facilitated if the effective stress and the masses of species
in the solid phase {mL,k € S~} (or the molar fractions {x%\,k € S~} defined consistently from the latter
according to Eq. (2.17)) are considered as primary variables instead. From a practical point of view, the
above mentioned unloading curves can be considered to occur at almost constant x{, as mechanical loading,
at constant chemical potential 1, will be shown to have a small influence on the chemical composition of
the solid phase.

Let us introduce the decomposition of the strain and total and effective stress tensors into their spherical
and deviatoric parts, namely

tred

3

el _

I+deve!, o6=—-pl+s, d=-pl+s 3.14
) p ) p ) ( )
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with the two first stress-invariants

1
tre  _ tro 3 2
pf—T’ p——T, q(ES.S) . (3'15)

Let us consider now the purely chemical contribution to the chemo-elastic potential, namely RT/ V¢ g{xig,
k € S}). We require this chemical part to have the classic form (2.7), that is since Nk = mék Vo /m™, we
require 0 /ONf = Lnx¢k. Then up to a constant depending on the number of moles of solid particles N,

ol e ) = S mgtond - ( SougJua( T 519
keS— leS nes

We are now in position to obtain the chemo-elastic potential in the above motivated mixed form. For that
purpose, we first define a partial Legendre transform %75, (@, {mS\, k € S=}) of the energy # ', namely
W@, {mis, k€ ST} =03 : e — W) =€ 156 — > Tysdmi, (3.17)
keSS
from which follow the constitutive relations,
el el
a_ Oy _ 0N

- — s = — ol
do Omig

kes. (3.18)

In the analysis of Na-Montmorillonites (LHG, 2002) the dependence of elastic properties on chemical clay
content could be reduced to the dependence on mass content (in fact the molar fraction) of absorbed water.
In contrast, in heteroionic clays, there are several counterions in the solid phase to consider, with different
impacts on clay deformation and deformability. Thus, the elastic properties are assumed to depend on the
mass content in these counterions. So we set,

7 RT

G P (3.19)

Wiil<a’ {mZ}S"k € SH Z :ukSmkS ptre + KF(p plc)

keS—
where ¢ = (x5, k € S7) and k = k(x{k,k € ST U{w}) and u); = g,?s/m,(cM), k € S~. Here F(p,p,) is the
function that introduces a logarithmic dependence in mean-stress,
dr
dp
and tre is the value of the elastic volume change when the effective mean-stress varies from the conver-
gence stress p, to a small reference value p, while the pore fluid is distilled water,

—n 2, (3.20)

P

. . P _
F(p,p,) :anﬁ_ — D,

K

tred = —Kd“’Ln% with & = k(xx™ k € ST U {w}). (3.21)
0
An estimation of the chemical content of clay clusters, denoted by the symbol dw, when pore water is
distilled is proposed in Appendix D.
In absence of detailed experimental data showing the influence of the chemical composition of pore
water on the shear modulus G, the latter will be simply assumed to be constant. Then, in view of the chemo-
elastic potential (3.19), the elastic constitutive equations (3.18) reduce to:

N
€cl — (trefj — kLn %) g—‘r%,
ok RT (3.22)

Hys ZHZS—F@a?K)a—el‘f‘ Lnka7 kesS™.
Mys mk
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Although the formulation is by no means restricted to such states, the manipulations will become more
familiar to Cam—Clay users if the deviatoric stress and strain are assumed to maintain fixed directions
during loading e.g. as for triaxial compression or extension paths, or more generally paths with constant
Lode angle. Then the stress and strain states can be fully characterized by two work-conjugate invariants
only, namely (p,q) and (treel,ezl). An incremental form of the elastic constitutive equations provides
(—8p, 8¢, {5, k € S7}) in terms of (3tre, e, {Smy, k € S7}). Note, however, that the masses are
subject to the electroneutrality constraint, precluding the inversion of the above relations. On the other
hand, inclusion of the electrical field as a Lagrangian in conjonction with electro-chemical potentials
provides invertible constitutive equations via a symmetric matrix,

[ —3p | By, 0 Bn B Bx Ba 0] [dtred]
dq 0 3¢ O 0 0 0 0 6621
Oftyys By 0 Pow Bina Pk Pea 0 dmel
OMNas | = [Bnap 0 Prnaw Pnana Prnak Prnacr Sna | | Smlys |- (3.23)
SHiKs Bk, 0 Pxw Prna Prx Pra  k dmsg
Ofis Bep, 0 Baw Bana Pox  Baa  Ca || dmi
L 0] L 0 0 0 CNa ¢k Ca 0 || 8¢° |

Here the incremental bulk modulus B,, and the coefficients By,, and f,,, are defined as follows:

p ap Oys p o
B,==, By=B,=— = = — , keSS, 3.24
L P &4 omis  Otred P pe omik (3.24)
and
6/7ks kaBlp _ aZK RT 1 Gx,";ls
= = =——=—F(p, — , k1eS. 3.25
B = Bu omsk B, (».P.) omsLomeL m,iM) xcL omel ( )

The symmetry of the f’s results from (2.18). Since the elastic shear modulus G is independent of the
chemical composition of the solution, there is no coupling between shear components and chemical vari-
ables. In view of simplifying the notation in the elastic—plastic analysis, it will be convenient to denote the
coefficients related to the shear components by

qu = 3G7 By = 07 (k7 Z) 7é (qvq) (326)

The last line of (3.23) is obtained by differentiating the electroneutrality relation (2.24): note that the latter
is expressed in terms of total masses, but, when the behaviour is elastic, the changes of total and elastic
masses coincide.

Notice that the symmetry of the incremental elastic stiffness is essentially due to the existence of the
(electro-)chemo-elastic potential # 5 + >, .. &k’

Remark 3.1. Identification of the pressures in the solid phase.
For incompressible species, the effective electro-chemical potentials of the species in the solid phase, Egs.
(2.17), (3.12), integrate to

—ec ec  Pw Prs — Pw RT el -
M = 1 — = = s +——— + gy Lnxjs + &¢°, kesT. (3.27)
Pis kS my,

Comparison with (3.22) gives the pressure difference pys — py as a function of the variables p, {mS, k € S7}.
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Remark 3.2. A strain-based chemo-clastic potential.

We have argued that extension to solutions containing many species would be easier if we use the above
chemo-elastic potential in mixed form. One can nevertheless formally define a strain-based chemo-elastic
potential # (e, {mk, k € S°}). Indeed, the effective mean-stress 7 can be obtained from (3.22) as
D =D, expl((tre,ec1 —tre!)/x). Substitution of the stress in %7, yields the strain-based chemo-elastic po-
tential #,

RT
W (e {mis,k € S7}) = > wsmis +1p + Gdeve : deve + T (3.28)
keS—

where ¢ = @(x,k € S7), k = k(xik, k € S* U {w}). The constitutive equations follow via (3.13),

6 = —pl+2Gdeved, p=p exp((tred — tre?)/x),

Ok RT

e _ . = 3.29
Hyg = .uzgs - F(p,p.) ome! + M) Lnxk!? + ékd)S, kesS™. ( )
kS mk

3.5. A simplified elastic model using the concept of chemical reaction

3.5.1. Cation exchange as a chemical reaction

In view of simplifying the above formalism, we now consider that the cations and adsorbed water do not
affect the mechanical properties independently. We will employ constraint resulting from the chemical
reaction analysis to express these relations of dependence.

The amount of chloride anions in the solid phase is certainly small due to the presence of the negatively
charged clay platelets. So, we may assume that the membrane is impermeable to chloride anions, or even
that the number of moles of chloride anions is negligible,

NCIS ~ (. (330)

Therefore, if we account for the actual valences of the cations, {y, = {x = 1, the total number of ex-
changeable cations N,, in the solid phase ° turns out to be constant, namely from (2.25),

Nlﬁf;g —&—NI((? = Nex = —(Nes = constant > 0, (3.31)

where the superscript (el) is intended to imply that the relation is assumed to hold in terms of total numbers
of cations, as well as in terms of the reversible change in their number. Consequently, a single variable is
sufficient to describe the variation of the number of cations in the solid phase. Indeed, the cation exchange,
combined with the mechanism of water absorption into/desorption from the clay crystal solid, may be
viewed as a chemical reaction between solid and fluid phases,

K" + NaX - nH,0 = KX - mH,O + Na* + (n — m)H,0, (3.32)

involving

the cations in pore water Na™ and K,

the exchange complex NaX - nH,0,

absorbed or desorbed water, and

n and m, stoichiometric numbers of moles of interlayer water hydrating a cation.

3 In fact, in the present analysis, Nex can be considered either as the total number of cations in the solid phase or as the number of
exchangeable cations.
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Thus, the difference n — m corresponds to the number of moles of water (per mole of clay) removed from/
added to the solid phase as a result of the cation exchange: it introduces a second variable that describes the
water content of the phases.

According to (3.32), the total and elastic changes in the numbers of moles of cations in the solid and fluid
phases are linked by the following relations,

SNNas = —ONiG] = —BNEEete = SN gt (3.33)

Consequences for the relations between changes of (reversible) masses follow from the relation
m,(j? = m,(fM) / VONk(,e(l). The molar fractions of absorbed cations and water can be expressed in terms of the

numbers of moles of cations Na' and of water,

(el 1
@) N (el) N

Na. — o xW = o - (334)
(=N NS Y (1= LN + N

Notice that xf,f? depends on a single variable, namely on N\(VeSD.

3.5.2. Enthalpies of hydration and dehydration and the equilibrium constant

We shall consider in particular the smectite defined by X = Al3Siz;O0,o(OH), for which we have specific
data available. If we restrict attention to the reaction of cation exchange, setting aside the absorption/
desorption of water, the so-called equilibrium constant K, can be shown to be equal to the product of two
terms, the first one coming from the mechanical contribution to the chemical potentials, the second one
from the contribution due to the free enthalpies of hydration/dehydration,

xel XNaw A gmech A ghydr
K. — Ks *Naw _ _ . 3.35
o (e () 039

To prove this relation, it will be convenient to use the effective mole-based chemical potentials g,s = m} i,
k = Na, K, and to choose the sole mass content of the sodium as independent variable. Let us start from the
sum of incremental works done by the reversible changes of masses of the cations i, dm} with k = Na, K,
and K = S, W. In this sum, all the incremental masses can be expressed in terms of 3m,,, in view of (3.33).
Hence, equilibrium is found to require that the mass-based chemical activities of the cations are the same in
the solid and fluid phases, namely

As— Ay =0, (3.36)
with
_ | _
AK:W(gNaK_gKK)v K=SWw. (337)
MmN

The terms Ag™" and Ag™% in Eq. (3.35) result from (3.36),

(M)
mec m a
™ = (80— ) — (o — ), 339)
my
and
A = (ghs — has) — (8w — Ear)- (3.39)

Here g is the free enthalpy of formation of the anhydrous part of the hydrated cluster KX - nH,O, with a
similar definition for g¥,,. g%, and g%, are the free enthalpies of solubility of the cations K and Na* in
pore water.
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The mechanical contribution to the equilibrium constant can be checked to be very small for the range of
pressures of interest here, so that the first term on the rhs of (3.35) is practically equal to one.

For the smectite NaAl;Si;O,o(OH), under a pressure of 1 bar and at a temperature 7 = 298 °K, Tardy
and Duplay (1992) provide the following data for the hydration free enthalpy Agh¥d" = (—5591.1 —
(—5565.9)) — (—282.5 — (—261.9)) = —4.6 kJ/mol. The negative sign of this quantity implies the value of
K.q to be greater than 1, in fact K, = 6.3, and it indicates that the cation exchange from left to right in
(3.32) is spontaneous.

3.5.3. Elastic constitutive equations
In view of the relations (3.30) and (3.33), the incremental elastic energy (3.17) simplifies to

S (@, {mely, mS V) = € 1 86 — Tsomely — Asdmsl ., (3.40)
from which follow the constitutive relations,
aw‘el a,W‘el _ aWel
el _ M= M o M 3.41
o ) Hys ami}s ) N amgas ( )

The elastic constitutive equations are thus completely defined as soon as the potential %~ fvll is given, e.g. by
(3.19). In fact, these equations can be viewed as a specialization of Eq. (3.22). Eq. (3.22); remains un-
changed as well as the chemical potential of absorbed water, Eq. (3.22), for £ = w. The only formal dif-
ference for the set of equatlons (3.22), comes from the fact that the difference of partial der1vat1ves
o/omS s — m! /mN‘l 0/0msl g now becomes 0/0m$ s in view of (3.33) as the dependence of k on m,; and
mg reduces to a dependence on mg ¢, so that

1 o RT . X
As =W(g%a,< — &kx) —F(I%P,c)amT*‘WLn xljls- (3.42)
my, Na$ my, KS§

An incremental form of the elastic constitutive equations provides (—3p,8q, Sfiys, d4s) in terms of
(Stre, 8¢g', dm, dmR,g). In contrast to the general formulation of Section 3.4 , the electroneutrality
condltlon is now automatically accounted for and the electrical field need not to be involved. The incre-
mental form of the elastic constitutive equations is then defined by a symmetric 4 x 4 matrix,

- 81_7 Bpp 0 Bpw BpNa Stre®

¢ | |0 3 0 0 d¢g (3.43)
8ﬁwS B BWP 0 ﬁww ﬁWN‘d amel . |
SZS BNap 0 ﬁNaw ﬁNaNa 8’/nNaS

The coefficients By, and f,; are still given by the formulas (3.24) and (3.25), to within the last term in (3.25).

4. Elastic—plastic constitutive equations
4.1. Scope of the model

The analysis presented in LHG (2002) was devoted to clays which contain essentially one cation, like the
Ponza bentonite studied by Di Maio (1996) which is an essentially Na-Montmorillonite. The presence of
several cations not only requires to account explicitly for electroneutrality but it also produces new aspects
in the behaviour, as the relative contents of the two cations vary, as a consequence of the chemical
composition of the pore water. These aspects have been introduced in the elastic behaviour through
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k-dependence in the molar fractions of the cations. However, experimental data available so far in the
literature do not reveal effects on the plastic behaviour typical of the presence of several cations. Therefore,
the elastic—plastic model will follow the same trend as for Na-Montmorillonites, to within the fact that the
relative contents of the cations will be kept trace of. The main features of the elastic—plastic behaviour that
we want to model are motivated first by the experimental observations of Di Maio and Onorati (1999) on
Bisaccia clay, a clay of marine origin.

4.1.1. Mechanical loading

The specimen is in contact with a large reservoir of constant chemical composition and at atmospheric
pressure, so that py ~ 0. The load is continuously varied, sufficiently slowly however in such a way that
electro-chemical equilibrium can be established at the end of each load increment. Therefore, one may
assume the electro-chemical potentials of all species that can transfer to be equal, at the end of each load
increment, to the known electro-chemical potentials of their counterparts in pore water. Experiments show
that the curves e-Lnp are approximately straight and converging to a small void ratio interval. However,
the slopes of the loading and unloading curves decrease as the Na-content of the pore water increases. This
trend holds whatever this content, that is from zero Na-content (distilled water) to saturated solutions (that
is at 20 °K and under atmospheric pressure, 6.15 moles of NaCl per liter of water).

4.1.2. Chemical loading: chemical consolidation and swelling

Under constant mechanical conditions, a chemical loading consists in varying the Na-content, or
K-content, of the pore water. When the latter increases, the void ratio decreases, and this decrease rate is
especially large at small salt content. When the specimen is re-exposed to distilled water, its volume in-
creases. These volume changes are in qualitative agreement with the osmotic effect: increase of salt content
leads to an increase of pore water pressure, and this in turn leads to water desorption. Alternatively, one
may say that water desorption/absorption occurs to equilibrate the salt contents in pore water and clay
pockets.

4.1.3. Elastic and elastic—plastic behaviours: chemical softening and preconsolidation

Mechanical loading at constant chemical composition corresponds clearly to an elastic—plastic behaviour
while mechanical unloading can be conjectured to be purely elastic, see Fig. 8 of Di Maio (1996). The
situation is more complex for chemical loadings. At relatively small stresses, chemical loading cycles on
Ponza Bentonite (void ratio between 1 and 8) seem to be practically reversible while the amount of plastic
contractancy increases with the applied stress, Fig. 7 of Di Maio (1996).

However, mechanical loading following chemical consolidation was observed to give rise to precon-
solidation on reconstituted specimens of Bisaccia clay (void ratio between 1 and 3), Fig. 7 of Di Maio and
Fenelli (1997).

During chemical loading on normally consolidated materials, the elastic—plastic model developed in
LHG (2002) and adapted here to the presence of two cations shows first an elastic—plastic behaviour fol-
lowed by an elastic behaviour, thus displaying both plasticity and preconsolidation due to chemical effects.
The relative importance of the plastic stage increases with confining stresses. In a simplified version of the
model, chemical loading on normally consolidated materials occurs in the elastic regime.

The behaviour qualitatively described above is now given an analytic expression.

4.2. Incremental elastic—plastic relations
4.2.1. The general case of compressible species

The generalized strains are decomposed in an elastic part (superscript el) and a plastic part (superscript
pl), namely
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1 1 —
e=€'+ e vy =0 +oly, ms=ms+m, keEST. (4.1)

The plastic incremental flow relations are motivated by the dissipation inequality (3.7);. In fact, let us first
substitute §¥* by ST% + 8 using (2.30) and (3.9), and second let us use the strain decomposition (4.1).
The resulting dissipation 6Dy,

3D; = 6 : 8™ + py it + Z fsOmPs = 0, (4.2)

keSS
motivates the generalized normality flow rule,
0g 1 1 0g
st =548 Sl =58 oml =548 kes- 4.3
@Gy O =0, ol S, ke 3
where 84 > 0 is the plastic multiplier and g = g(o, pw, { s,k € ST}) the plastic potential.

4.2.2. Incompressible species

Henceforth, the analysis is restricted to incompressible species. The incompressibility constraint (2.32),
that holds in both the elastic and elastic—plastic regimes, provides the increment of plastic volume change of
the fluid phase,

1 Bmpl
3o, = Stre?! — £ (4.4)
keS— Prs
The dissipation inequality (4.2) becomes
0Dy =5 : 8" + ) Tisdmis = —ptrde” +s: deve” + Y Tsdmps > 0. (4.5)

keSS keSS
If, for simplicity, the analysis is restricted to stress paths with constant Lode angles, that expression mo-
tivates the generalized normality flow rule

0g

trde” = —34=5, devde _5q283s
P

334 omll — 548 ke s, (4.6)

a:ukS

Notice that in general the plastic increment of volume change of the fluid phase (4.4) has no reason to
vanish: in fact, it has been introduced specifically in order the incompressibility condition be satisfied. Its
existence in the compressible case allows a smooth transition between compressible and incompressible
materials.

4.2.3. Mechanical and chemical hardening/softening
The lines of volume changes during mechanical loadings have a slope A(fis, k € ST U {w}) and converge
to a point p,,
_ _ + P _ adwy P
tre =tre; — A,k € ST U {w})Ln;, tre; = —4 Ln;, (4.7
7 0

while the unloading curves emanate a priori from a different point p,., Eqs. (3.21), (3.22),

tre? = tre? — k(xk, ke STU {w})Ln—, tred = —xk™LnZx, (4.8)
D Po
with A% = J(@Y, k € ST U{w}), k™ = k(3™ k € §* U {w}). Combining these two relations provides the

preconsolidation stress p.. In order to reduce the chemical dependence of p. to a single type of parameter,
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namely the chemical potentials, we introduce a slight qualitative modification, expressing the chemical
dependence of k as kK = (i, k € ST U {w}). The resulting preconsolidation stress,

(=Rl = —tre + (2 — ) — O — @) Lo + (& — #)LnfZ, (4.9)
pO pO pK
with differential
-1~ stren + 1P 57— LnPe ok, (4.10)
De De De

appears as a modification of the usual Cam—Clay expression, which is recovered when both p, = p, and
A — & is independent of chemical content of the solid phase.

4.2.4. Incremental relations

We now specialize (4.6) and, following the arguments above, the plastic potential g and the yield
function f will be assumed to depend only on p,q, {5,k € ST U {w}}, and on tre, which allows for
hardening or softening. For plastic loading, that is the stress point is on the yield surface and stays there,
f =0 and &f = 0, the incremental constitutive equations become,

[ —%p] [BL BD BL BR, BY% B 0 [ dtre ]
8¢ B Bl BR Bla Bk B 0 || 3
Ot By, By, Baow Bina Bk Bua O Ormys
Sﬁ;‘faS = Ble\?ap B;?aq ;?aw ;?aNa ;?aK le\lpaCl CN‘A SmNaS : (411)
Sﬁf(cs B E)p B 6I:(I:)q ;gw gNa %)K B T(pCI éK om KS§
SHgs Bg, B&, Paw Boane Pix Pda  Ca || dmas
0 L 0 0 0 & Gk Ca 0 ][ 897

The incremental moduli B;} and S} differ from their elastic counterparts B;; which can be read from (3.23),
and f;,, Eq. (3.25), by a dyadic product, namely:

e 1 -
Bkllp :Bk/ _ﬁgkfh k7l € {pa an }a (412)

and

e 1 -
k?:ﬁkl_ﬁgkfla k,l€S™. (4.13)

The general expressions of the coefficients entering in (4.11), namely f;, g, k € {p,q,S”}, of the plastic
modulus A > 0 and the hardening modulus /4 are reported in Appendix B, together with their specializa-
tions when the yield function and plastic potential are of the Modified Cam—Clay type, namely
2
— _ q _

f:f(Pa% {#kS?kes+U{W}}7tr€pl) :]M_zj—)—i_p_pc’ (414)
with M = M (fi;5, k € ST U{w}) and p. = p.({Iis, k € ST U {w}},tre?). Notice that the major symmetry of
the elastic—plastic incremental relations holds iff the flow rule is associative, namely f = g.

Remark 4.1. The simplified model without chemical preconsolidation.

When the difference A — k is constant and the effective mean-stresses p, and p, are equal, the precon-
solidation stress p., Egs. (4.9), (4.10), does not depend on the chemical effects. Chemical loadings and
unloadings are then elastic, Fig. 3 of LHG (2002). Furthermore, the incremental response to isotropic paths
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simplifies, since then f'and g do not depend on the chemical potentials: dg = 0, d¢, = 0, and, for the as-
sociative Modified Cam—Clay (4.14),

< K — C 1 —
By =By k € {p.57}, BF =By~ BuBy.k 1 €57, (4.15)
with
11
g ( +_)p_ (4.16)
L —K K

4.2.5. The simplified elasto-plastic model using the concept of chemical reaction

The formulation is now specialized using the concept of chemical reaction in line with the development
of Section 3.5.

Satisfying the relation (3.31) for both the elastic and total number of moles of cations requires the
variations of the elastic and plastic (i.e. irreversible) numbers of moles of cations to be opposite,

SNZ ¢ + SNE = 0. (4.17)
Therefore the dissipation inequality (4.5) becomes,
8D, = —ptrde” + s : dev €™ + Ti,s0omT + Asdmb, s = 0. (4.18)
If, for simplicity, the analysis is restricted to stress paths with constant Lode angles, that expression mo-
tivates the generalized normality flow rule
0 0g 3 0
troe’ = —84°2 | devde! =422 sl =842 ol =542 (4.19)
op 0q 2q OHys ) 0ds

with the generalized potential g = g(p, ¢, fis, As). The yield function f has the same arguments as g plus
tre? which allows for hardening and softening.

The calibrations of typical interpolation functions for 4 and M in terms of {fi,s, As} are provided in
Appendix C.

0g

5. Simulations of chemo-mechanical processes

The subsequent simulations aim at quantifying the ability of the simplified model using the concept of
chemical reaction to capture the main features of the chemo-mechanical couplings that have been described
in Section 4.1. For that purpose, it would be desirable to have available a series of experiments on ho-
mogeneous specimens. A key difficulty stems from the time duration necessary to perform chemical
loadings for which chemical equilibrium can be considered to hold at any time. States at which macro-
transport processes have become steady at desired concentrations deemed uniform throughout the speci-
men are considered only. An order of magnitude of the duration the physico-chemical processes need to
reach equilibrium can be grasped from the chemical tests at fixed mean-stresses shown in Figs. 5(a) and
8(a). They refer to oedometric tests on cylindrical specimens of initial height 20 mm. However for the sake
of simplification, they are used as isotropic tests for parameter calibration and subsequent simulations.
Chemical consolidation appears to reach equilibrium in few days, while swelling is a much slower process,
requiring several weeks. The experimental data used here are assumed to represent effectively a succession
of equilibrium states, that is, with reference to the simplified model,

ﬁwS :HWW7 ZS :ZW- (51)
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5.1. Model calibration

The behaviour of Ponza bentonite, an essentially Na-montmorillonite clay, is explained by the one-salt
model exposed in LHG (2002). Part of the behaviour of Bisaccia clay, a natural marine-origin clay, is
explained by this model as well when it is exposed to distilled water or saline solutions of NaCl only.
However, when chemical loading involves another salt, it is necessary to have a finer description of the solid
phase. In line with the present modeling, Bisaccia clay will be considered to contain two essential cations,
Na* and K*. The directly measurable material parameters of these clays are reported in Table 1 and the
resulting model coefficients are provided in Table 2.

The compliances k(= k) and A are defined through a double interpolation between two sets of extreme
situations, as detailed in Appendix A and in Appendix C respectively. One interpolation is based on the
chemical potential of absorbed water as in LHG (2002). The second interpolation is based on the chemical
activity. Indeed, we consider in turn the two hypothetical extreme situations where the molar fraction of
one cation, say cation Na™, overweights the other in both phases. Let us give a flavour of the procedure for
the elastic—plastic compliance A. In reference to Fig. 2, the corresponding states are referred to as belonging
to the Na-plane and 4 is noted An,. We measure }fli]‘z and A3, corresponding respectively to distilled water
and NaCl-saturated solution. The chemical effect on Ay, is introduced through a first interpolation between
these two situations, for example

;LNa(ﬁws> = j~1Na(p()LSNaHNa(ﬁwS)) + ;“2N2H (52)

where the A;n.’s, i = 1, 3, are constants and @ and 6y, two interpolation functions.

The same procedure is followed to define the Ax’s, i = 1,3. Next, a second interpolation is defined
between the two reference planes, namely Na-plane and K-plane, based on the weights w;, k = Na, K, Eq.
(C.8), namely

J = M ®(0) + o, (5.3)
with
A= Z (bk/llka Ay = Z Cbkizk, )V30(ﬁw5) = Z d)k/13k0k(ﬁws). (54)
k=Na, K k=Na, K k=Na, K

These weights, which are linked to the chemical activity, Eq. (C.9);, are based on the relative numbers of
moles of the cations sodium and potassium.

The Ponza bentonite and Bisaccia clay have been remolded using distilled water and later exposed to
various saline pore solutions. During mechanical loading, the samples are assumed to remain in contact
with their initial pore solution; however even if they are exposed to distilled water during the mechanical

Table 1

Material parameters
Material Ky L a8 s Kl e 28 Yins
Bisaccia clay 0.120 0.010 0.200 0.090 0.013 0.005 0.093 0.085
Ponza bentonite 0.081 0.011 0.171 0.101 0.020 0.014 0.110 0.104

Table 2

Model coefficients
Material KINa K3Na AlNa /3Na KK K3K Ak A3k Keq b, (kPa)  p; (kPa)
Bisaccia clay —0.11 35 —0.11 6.0 —0.008 3.5 —0.008 6.0 5.0 800 800

Ponza bentonite  —0.07 6.0 —0.07 6.0 —0.006 6.0 —0.006 6.0 5.0 1400 2600
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Table 3

Initial conditions and other physical data
Material e peo (kPa) N Nys NNas Nks Nuw 1 —xow &
Bisaccia clay 3.30 10 1570 21,100 278 245 21,100 10-¢ —0.33
Ponza bentonite 8.00 40 1570 21,100 491.4 31.9 81,446 10-¢ —0.33

loading, the duration of the mechanical test is so small that a chemical loading which involves a diffusion
process has no time to take place.

Initial conditions are obtained as described in Appendix D with « = 0. The corresponding numbers of
moles for one cubic meter of porous media are given in Table 3. The chemical content of pore water is
obtained from Eq. (D.7). At 20 °K, water saturation by the sole NaCl is reached for x3., = 0.091, and
water saturation by the sole KCl is xi}, = 0.078. Saturation in presence of the two salts is not experienced
in the simulations reported here.

In fact, not all the measurable quantities listed in Table 1 are available. Practically, the identication
procedure is skewed by the fact that there are many more data in or close to the Na-plane than to the K-
plane. In the Na-plane, the parameters corresponding to both distilled pore water and NaCl-saturated
solution are available, that is measurable directly from the stress—strain curves or through slopes. The other
parameters are either guessed or defined in order to satisfy some qualitative specification as described
below. Partial information grasped from experimental data indicates that the presence of cations K* in the
solid phase stiffens the mechanical behaviour, that is, it reduces significantly the compliances x and A.

In LHG (2002), it was observed that chemical loading and unloading at constant stress are purely elastic
processes if the difference 2 — « is constant while the limit mean-stresses p,. and p, are equal. In fact, this
follows from (4.10) which then simplifies to

dpe p .
(—7) 22 = stre + LnPi5(4 — k). (5.5)

Pe DPe

Clearly, for 1 — K constant, the preconsolidation stress is not affected by changes of the chemical state.
However, some experiments by Di Maio (1996) show that chemical loading cycles are accompanied with
irreversible strains, whose intensity increases with the mean-stress level. Consequently, A — x should depend
in general on the chemical state, which for homoionic clays, is defined by the chemical potential of water
I,s- One may expect the chemical activity of the cations to be involved as well for heteroionic clays.

In order to analyze the chemical influence on p, let us consider temporarily a simplified setting. The
functions 0;, k = Na, K, Eq. (5.2), which introduce the dependence with respect to the chemical potential of
absorbed water i g, are taken to be the same for both cations, that is

K3y = K3, i3k = )\.3, Hk(ﬁws) = H(ﬁwS) for k = Na, K. (56)

The dependence of / — K with respect to the chemical potential of absorbed water and to the chemical
activity can be identified via (5.2)—(5.4),

0 —R) .. A—F)

d(l—k) = don, di, g, 5.7
( K) ad)Na WN aﬁws iuWS ( )
where
a )\, - ié " W W W w
(aqu) = (Jana — Ak) D(430) — (kK1nva — k1K) P(130) + (A — ") — (k% — &), (5.8)
and
0(A—K) do

= (/Ll)b’;@’(/b:;H) — K1K3¢,(K39))

aﬁwS dﬁwS .
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Then the coefficient of the chemical activity in (5.7) vanishes, and only the chemical potential of absorbed
water influences p., if the material coefficients satisfy the following restrictions,

qsat sat 1sat sat 1dw dw 1dw dw 1
/Na — KNa = Ak — KK Ana — Kna = Ak KK ANa = A3k = K3Na = K3K- (5.10)

If in addition, A; = k;, that is, if

A = = A i =N e = A SRR e = Ak = Kana = Kk, (5.11)
there is no chemical influence any longer on p. and therefore chemical loadings and unloadings at constant
effective stress are elastic, if p, = p,..

However, in LHG (2002), the values of x3n, and Asn., which can be identified as chemical consolidation/
swelling slopes, Eq. (C.5), were shown to be distinct for Bisaccia Clay. On the other hand, in absence of
available data, we shall accept the constraints (5.6);, which require that these slopes are the same for the
Na- and K-planes of Fig. 2. In addition, we do not have specific data that allow to explore the intensity of
plasticity for paths at constant chemical activity and at constant chemical potential of water respectively.
Therefore, we shall accept that the distance between the elastic and plastic coefficients is a constant in the
Na- and K-planes, and that this constant is the same in these two planes as indicated by the first set of
equalities in (5.11).

For Ponza bentonite, the identification procedure of LHG (2002) provides parameters on the Na-plane
that verify the related constraints dictated by (5.11). The parameters in the K-plane are chosen in order that
all the relations in (5.11) be satisfied. However, plasticity during purely chemical loadings can occur if the
limit stresses p,, and p, are not equal.

The first set of equalities in (5.11) leaves a single value to be ascribed for the parameters in the K-plane,
say )hf(w. After the initial state corresponding to distilled water has been obtained in the solid phase, the
parameter i;d(w can be calculated using the interpolation rules since the corresponding elastic—plastic slope is
available.

5.2. Mechanical and chemical loading cycles

In order to highlight the strong effects of chemical loading, the evolution of the void ratio for the
specimen which is in contact with distilled water and undergoes a purely mechanical loading is used as a
reference, marked by dashed curves in Fig. 3.

Fig. 3 shows mixed chemo-mechanical loading and unloading cycles. The mechanical load is the effective
mean-stress while the chemical load is the molar fraction of NaCl in pore water. The simulated consoli-
dation curves are nearly straight. The three tests in Fig. 3 differ by the values of the effective mean-stresses
at which the chemical loadings (replacement of distilled pore water by NaCl-saturated solution) and un-
loadings (return to a distilled pore-water solution) take place.

Since 4 — & is not constant, chemical loading leads first to a change, in fact a decrease, of the precon-
solidation stress p., a phenomenon that can be referred to as chemical softening. Thus plasticity occurs to
compensate for this negative effect and to maintain the preconsolidation stress equal to the applied stress, up
to a point from which the chemical influence on p. becomes positive, i.e. p. increases due to the increase of
Na' in solid phase, leading to chemical hardening and preconsolidation, Fig. 7(a). Plasticity gives rise to an
increased chemical consolidation. During chemical unloading, the swelling is partly elastic and partly
elastic—plastic, as can be checked from Fig. 7(b). The volume change is larger than during chemical con-
solidation, and in this respect the behaviour of Bisaccia clay is quite distinct from that of Ponza bentonite.
Indeed for the latter, the void ratio at the end of swelling practically returns to the dashed curve of the purely
mechanical cycle, see Fig. 6 in LHG (2002). The reason of this different behaviour is due to the presence of
two cations in the solid phase of Bisaccia clay. The initial state contains the two cations in a certain pro-
portion, point P, in Fig. 4(a). Increase of the Na-content leads to a decrease of k, point P,, but later chemical
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Fig. 3. Mechanical load cycle on Bisaccia clay exposed to distilled water (dashed curve). Chemo-mechanical loading cycles with re-
placement of the distilled water solution by a NaCl-saturated solution, later replaced itself by the distilled water solution (solid curve).
The three sets of data and simulations differ by the mean-stresses at which chemical loading and unloading are performed. Re-
placement of preexisting cations K™ in the clay cluster by cations Na™ implies that swelling is larger than chemical consolidation as
explained by the increase of mechanical compliances shown in Fig. 4(a). Experimental data by Di Maio and Fenelli (1997), their Fig. 7.

unloading leads to a value of k larger than the initial one, point P;, Fig. 4(a). Mechanical loading-unloading
has a small effect on the chemical composition of the solid phase, so that the state does not change signif-
icantly from the end of the chemical consolidation to the beginning of chemical swelling, i.e. P, ~ P).



4352 A. Gajo et al. | International Journal of Solids and Structures 39 (2002) 43274362

4
K

sat

Ky P
1
Tks s
(a) Chemo-mechanical loading defined on Fig. 3 (b) Chemical loading defined on Fig. 5

Fig. 4. Qualitative evolution of the elastic compliance x during the chemical loadings described by Figs. 3 and 5. The initial state, Point
Py, is located on the line of minimal cation content which ensures electroneutrality for a distilled pore water, see Fig. 2. The subsequent
changes of the chemical content of pore water leads to changes in the solid phase which are accompanied with variations of «, Points P,
to Ps, as described in Appendix A. As a general rule, both compliances x and 4 are much smaller on the K-plane than on the Na-plane.

The fact that « is larger at P; than at Py is responsible for the larger swelling observed in the simulations
of Fig. 3, in agreement with experimental data. On the other hand, for the Ponza bentonite studied in LHG
(2002), the whole process was occurring in the Na-plane of Fig. 4(a), so that the initial and final values of x,
like their representative points P; and P;, were quite close.

Due to irreversibilities and non-linearities involved in chemical coupling, model simulations of chemical
loading and unloading will be highly dependent on the assigned path in terms of the mass contents or molar
fractions of the species in pore water. In the following, for the sake of simplicity, we assume that the sample
is in contact with a water reservoir having a volume equal to the pore volume of the sample. Actually the
volume of water surrounding a sample in an oedometric cell is usually larger than the value here assumed.
The chemical loading is simulated by adding a controlled mass of NaCl salt to free and pore water. This
addition induces an increase of the molar fraction xn.j, Which, in the initial phase of loading, is coun-
terbalanced by the release of K* from absorbed water, point P; to point P, in Fig. 5(b). This counter-
balance phenomenon is particularly important at low values of xn, and induces the curved increase of the
relative weight of Na™ in the solid phase as shown in Fig. 6 from point P; to point P,. In fact, one should
stress that the exact experimental set up has a quantitative influence on the absorption/desorption pro-
cesses. For example, increasing the ratio volume of reservoir water versus volume of pore water decreases
the curvature of the path Py to P,. The chemical unloading was simulated by the subtraction of masses of
both NaCl and KCl from the reservoir and pore water, point P, to point P; in Figs. 5(b), 6: the idea is to
mimic the frequent substitutions of reservoir water performed experimentally.

5.3. Chemical loading cycles involving two salts

After equilibrium with a distilled pore water at p = 40 kPa has been reached, cycles of chemical loading
and unloading are applied while the effective stress is kept fixed. A chemical cycle consists in exposing the
sample to a salt-saturated solution (chemical loading), subsequently replaced by distilled water (chemical
unloading). The salts used here are NaCl and KCI. Results are presented in Figs. 5-8.
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(c) Evolution of the relative number of cations Na* and K™ in the solid phase.

Fig. 5. Complex chemical loading on Bisaccia clay with successive replacements of the pore solution after equilibrium has been reached
under the fixed effective mean-stress p = 40 kPa. Pore solution is 1/ distilled water, 2/ a Na-saturated solution, 3/ distilled water, 4/ a K-
saturated solution, and finally 5/ distilled water. Replacement of preexisting cations K by cations Na™ implies that the first swelling is
larger than chemical consolidation, and the second swelling much smaller in agreement with Fig. 2. Evolution during the process of (a)
the height of the oedometer, (b) the volumetric strain, (c) the relative number of cations Na* in solid phase. Experimental data by Di
Maio and Fenelli (1997), their Fig. 4.
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Fig. 6. Evolution of the relative number of cations Na™ in the solid phase with respect to the total number of exchangeable cations Ny
for the loading process on Bisaccia clay of Fig. 5.

Tests concern Bisaccia clay, Fig. 5, and Ponza bentonite, Fig. 8. For Bisaccia clay, the first chemical
consolidation due to saturation of pore water by NaCl leads to some plasticity as described in relation to
Fig. 3. Also in agreement with the observations regarding that figure, the amount of contractancy due to
plasticity is not sufficient to overcome the increase of x due to the subsequent exposure to distilled water,
path P, to P; in Fig. 4(b): therefore the chemical cycle results in a net dilatancy. However for Ponza clay,
the initial state is much closer to the Na-plane in Fig. 2. Therefore, the change of x at the end of the
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(c) Exposure to KCI saturated solution. (d) Re-exposure to distilled water.

Fig. 7. Evolution of the mechanical properties and of the preconsolidation stress p. during chemical loadings and unloadings at
constant p = 40 kPa shown in Fig. 5. The behaviour is elastic—plastic initially: plastic contractancy occurs first to compensate for
chemical softening and maintain constant p. = p. Where the chemical influence on p, is positive, it results in an elastic behaviour and
preconsolidation. The subsequent exposure to water (b) shows also some plasticity (where p, is equal to the applied p) which disappears
in the next cycle, (c), (d). The successive points Py, ..., Ps refer to Fig. 6.

chemical cycle is quite small, and consequently, the occurrence of plasticity during chemical consolidation
results in a net contractancy at the end of the first cycle.

The first exposure to a KCl saturated pore water solution leads to a large decrease of x, path P; to P, in
Fig. 4(b): since ' — k&' = —0.115 is almost equal to x — k& = —0.110, the associated decrease of
volume is quite similar (to within the sign) to the volume increase due to the previous exposure to distilled
pore water, Figs. 5 and 8. Subsequent exposures to distilled water and KCI saturated solutions display small
volume changes since the values of k remain small as the path remains close to the K-plane in Fig. 4(b), e.g.
path P, to Ps associated to Fig. 5.

The effect of the equilibrium constant K., also referred to as selectivity coefficient, is illustrated by the
evolution of the relative number of cations Na* with respect to the total number of cations present in the
solid phase, Figs. 5(c) and 8(c). In fact, saturation of the pore water by NaCl leads to a relative increase of
cations Na™ in the solid phase, but the percentage of cations K* that are not desorbed is still significant at
the end of the first cycle. On the other hand, saturation of the pore water by KCl leads to almost complete
desorption of the cations Na™. This information is also readable from Fig. 6 which provides in addition the
quantitative evolution of the relative number of cations Na® with the chemical content of pore water.

Notice that the model forecasts a progressive replacement of the absorbed cations by cations Na™ at the
first stage of loading history, Fig. 8(c). However, the amplitude of the phenomenon is much smaller than
experimentally observed, Fig. 8(a). One explanation might be that the initial content in absorbed cations
Na* is smaller than assumed in the simulations.
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Fig. 8. After equilibrium has been reached under the fixed effective mean-stress p = 40 kPa, a complex chemical loading is performed
consisting of successive replacements of the pore solution. Experimental data on Ponza bentonite by Di Maio (1998), her Fig. 15. The
presence of cations K* stiffens significantly the mechanical properties.

Since we are concerned here with pointwise material properties, the time scale along the abscissa in Figs.
5 and 8(b), (c¢) is purely fictitious: only the equilibrium values (horizontal segments) are obtained by the
constitutive equations. In order to obtain the time-evolution of the volume change of the sample, a
complete initial and boundary value problem involving transfer and diffusion effects will have to be con-
sidered (Gajo and Loret, 2002).

6. Comparison with the model of LHG (2002) and conclusions

The model developed here can be viewed as extending the classic elastic—plastic framework for porous
media to account for electro-chemo-mechanical couplings. Therefore, it can capitalize upon the available
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theoretical and computational developments in view of solving initial and boundary value problems in a
multi-dimensional setting. Although analyses of instrumented in situ cases are the ultimate goal, it will be
necessary in a first step to simulate laboratory tests to check the validity of certain assumptions that have
been made to interpret the experimental results, e.g. assumption of chemical equilibrium and homogeneity
of the chemical fields throughout the sample at the times where measurements are made. Such an analysis is
presented in Gajo and Loret (2002).

The present electro-chemo-mechanical constitutive model for heteroionic clays (used for two cations)
reduces smoothly to the chemo-mechanical model for Na-Montmorillonite clays when the relative fraction
of cations Na™ overweights that of K*. In fact, the present simulations of Ponza clay displays two mod-
ifications with respect to the ones shown in LHG (2002). In LHG (2002), salt was not allowed to transfer
from the solid phase to the fluid phase and conversely, although the general scheme allowed for that
possibility. The reason to prevent that transfer was that the model did not recognize cations and anions
but only salts, e.g. NaCl, and so transfer of Na™ in the solid phase would have brought anions Cl~ as well.
On the other hand as in LHG (2002), the fotal amount of absorbed salts, that is cations and anions, is
constant, due to the assumption of a negligible amount of chloride anions and electroneutrality. A second
modification is that the present model recognizes that Ponza bentonite, although an essentially Na-
Montmorillonite, contains also cations K+ whose relative weight strongly matters. Therefore while the
representative states of the solid phase shown in Figs. 2 and 4 were in the Na-plane in LHG (2002), they are
now, more realistically, close to that plane as long as pore water is distilled or contains NaCl. If another
cation, like K*, of selectivity constant greater than one with respect to Na' is dissolved in pore water, it
transfers at a fast rate in the solid phase, e.g. Figs. 6 and 8(c), the cations Na' are desorbed and the
representative states in Fig. 4 leaves the Na-plane to get closer to the K-plane.

The model is three-dimensional, even if the first basic verifications presented here concern isotropic
loadings. Drained and undrained triaxial tests, for which experimental data exist, have been simulated in
LHG (2002).

The data available show that cations Na™ and, more drastically, K™ stiffen significantly the mechanical
properties k and 4. Data from Di Maio and Onorati (1999) also show that samples in contact with a NaCl
solution have a friction angle which increases with the salt content of the solution. The model presented
here can incorporate the variation of friction angle due to chemical content of the solid phase through the
parameter M, Appendix C. However, we do not have available data showing whether or not exposure of
samples to KCI solutions has a still stronger effect on the friction angle than exposure to NaCl solutions.
For that purpose, triaxial drained or undrained tests have to be performed.
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Appendix A. Chemical interpolation of the elastic coefficient x

To estimate the effect of pore water composition on the elastic coefficient x, one has in a first step to find
the elastic molar fractions ng, k € §7, which initially are equal to the total molar fractions x.s: these
quantities are not controlled, they are a by-product of the constitutive equations.

With this preliminary step in mind, we consider in turn the two hypothetical extreme situations where the
molar fraction of one cation, say cation Na', overweights the other in both phases. We get measures or

dw

approximations of the values of «{} and . corresponding respectively to a distilled and salt-saturated



A. Gajo et al. | International Journal of Solids and Structures 39 (2002) 43274362 4357

pore water. Then, chemical influence of absorbed water on « is introduced through interpolation between
these two situations. The same calibration is performed on the K-plane where the molar fraction of cations
K™ overweights that of cations Na*.

The complete expression of x is obtained by a second interpolation over the molar fractions of the
cations.

The notations (x2,)* ™ and (x¢L)*“" refer to the molar fractions where only cation k is present in the solid
phase and the pore water solution is either k-saturated or distilled water. The influence of absorbed water is
introduced via the scaling functions 0, (xl,),

)k dw

x\e;:s (x\e;s)kdw -1
(XSS)ksat/ (x{c;s)kdw ~-1

and the individual influence of the cations by the weighting function w;,

0, (x2) = k =Na, K, (A.1)

el

X
el el _ kS —
COlf(xNels‘?xKS) — el el k= Na7 K7 (A2)
XNas T ¥Ks

and so wn, = 1 — wk. The elastic coefficient x; on the plane k is assumed in the form
Ky = Kk(xSiS) = Klng(KSkOk) + Ko, k= Na, K. (A3)
For definiteness, we take

B(0) =0, &(0)= ‘;—f (y=0)=1. (A4)

For example, @ may be the hyperbolic tangent tanh and then @'(y) = 1 — tanh®(y).

The coefficients iy, x» and x3; are obtained from the four measurable quantities k%4 and x*%* and from
the slopes dic/dxel(x = (x¢)*™™), k = Na, K, namely
sat dw
dw Ky — K
= = k=Na, K A5
Kok Ky Kik ‘D(K3k) ) a, ) ( )
and
K3g ()Cds)ksat - (xds)kdw de | el \kdw
= 1w W = k = Na, K. A.6
¢(K3k) Klscat _ ng dxs\}S (wa (wa) )7 a, ( )
Next, one defines an interpolation between the Na- and K-planes,
Kk = 11 P(k30) + K7, (A.7)
with
K1 = Z WKk, Ky = Z Wi Kok, K36(ijs) = Z ka3k0k(x$S). (AS)
k=Na, K k=Na, K k=Na,K
The following derivatives are needed,
0 0
SO O (hy— ), k1=Na, K, (A.9)
Oxgs Oxgs  Xis
and
do 1
k= k= Na, K, (A.10)

dls () )
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in order to calculate

di = Z (k1 D(Kk30) + Ko + k1K 0, D' (1630) )dwy + 11 K30 D' (1c30)d 0y (A.11)

k=Na, K
which in turn, together with (2.18), is used to calculate

Ok Ok 6x§1S
—e = —e —e . (A 12)
omsk IESZ:U{W} xSl Ome
Simplifications arise if the relation (3.31) is used. Indeed, then w; = N,fé /Nex, so that dwy;/ dm,ig =T /Nexm,EM)
and

Ok oK
dic = G dmiiys + G- dm{, (A.13)
am?\lTaS Nas amws s
with
- P(r30 0 0k )11 @' (1630 Al4
Omlys  Nm™ ((kina — 1k ) D(130) + (kana — K2x) + (KanaONa — K3k O )11 @' (K30)), (A.14)
and
oK axel d@k
— = K19 (k30) K3tk (A15)
amvés 6mws k:%,:x dxvgs

Appendix B. Elastic—plastic stiffness

The coefficients f;, g, k € {p,q,S”} entering the elastic—plastic stiffness (4.11) are obtained by writing
the consistency condition 6f = 0:

0
fi=-8, L S 5L kzq =362
6 leStu{w} a Hs aq (B 1)
0g g :
gk**kaF+ Z ﬁklﬁ/s, k#q, gq:3G@-

leStu{w}

The plastic modulus H is assumed to take only strictly positive values,

of og of og (af 0g 0g of > of og
H=h+B —=+4+3G= B ——+t—=—= |+ By = =, B.2
" p p dg oq ,(GSZU:{W} “\ 9 s 0P Mg ky,e;{w} “ O Omys (B.2)

while the hardening modulus / will be positive for hardening, and negative for softening,

p. Og
A—1x Op (B.3)
For the Modified Cam—Clay model (4.14), the following derivatives are needed,
0 1 ¢ 0 2 0 2 ¢ oM 9
f:l——f—z, O 24 O 2aM 0o, (B.4)

P ’p dg Mp’ Oty M3 p Ofys  Ofiys
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where

afc = (LaZ a_—;t — Lo a_—K e (B.5)
Oftys Pe Ols Pe Olys ) 2 —K

Appendix C. Chemical interpolations for the plastic coefficients A and M in terms of {# g, Zn.s — Zxs /)

To estimate the effect of pore water composition on the plastic coefficients 1 and M, one has in a first step
to find the chemical potential of water and the chemical activity of cations in the solid phase. At equi-
librium, these quantities are simply equal to their counterparts in the fluid phase. Since the chemical effects
on these two coefficients are assumed to be similar, we just consider one of them, say 2 = A(Ti 5, Enas — Zks)-

We consider in turn the two hypothetical extreme situations where the molar fraction of one cation, say
cation Na™, overweights the other in both phases. We may get measures or approximations of the values of
idN‘Z and Ay, corresponding respectively to a distilled and salt-saturated pore water. Then the chemical effect
on /, noted An,, is introduced through interpolation between these two situations, for example

lNa(ﬁws) - /llNa@(/hNaeNa(ﬁwS)) + )~2Naa (Cl)

where the Ana’s, i = 1,3, are constants. The hyperbolic tangent is taken as the interpolation function, i.e.
¢(y) = tanh(y) and

P (fys) — P(Hgs) (C2)

Gk(ﬁw ) = —sa —dw\ ?
() — P(Esy)
where
@) —exo (). k=N, K, w (€3)
Then
1sat 2dw
ANa — *Na dw
= ——— = }., . 4
j-lNa ¢(}~3Na) 9 )”ZNa Na (C )

The constant /3, can be obtained from the slope di/dfiy,s estimated at &, = 7%, indeed

T GES) — B diNa( d¢ ) (C3)
@nh(sng) A0 0 diigs \dfis ) '

The same procedure is followed to define the A, i =1, 3.
Next, one defines an interpolation between the Na- and K-planes,

5= 2 B(a0) + o, (C.6)
with
= Z Wik, Ao = Z Opdok,  A30(Tys) = Z @310k (Hys)- (C.7)
k=Na, K k=Na, K k=Na, K

The weights @n, and @k, with sum equal to 1, are defined as follows,

AN P (8is) _ 1 _
OB ) =5 ) o) T4 b -2 7K (€8)
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The following derivatives

~ CbNa Cz')K — — (]5 (ﬁwS ) dﬁwS
dwNa = RT (dgNaS - dgKS)7 dek = W RT k= Na» Ka (C9)

are needed in order to calculate
di = ((anva — i) P(730) + (Jona — A2x) + (AsnaONa — A3k Ok )41 @' (230))ddna

dOna do 1y N g
+ <de;\,3Nd N K ))»]@ (A30)duws. (CIO)

+ ki
d:uwS K d:uwS

Appendix D. Determination of the initial state in the solid phase

We seek for an initial approximation of the state in the solid phase while the chemical composition of
pore water corresponds to distilled water. The following data are assumed to be either known or guessed:

void ratio e;

ratio Ny /Nys of the number of moles of water in the fluid and solid phases;

ratio Nks/Nnas of the number of moles of cations in the solid phase;

ratio Ncis/Nnas of the number of moles of Cl~ versus Na' assumed to be very small;

o: volume percentage of absorbed water that evaporates only at very high temperature;

valences of all species; for an anhydrous smectite of formula NaAl;Si30,0(OH),, Ransom and Helgeson
(1994) find approximately a volume average of three moles of clay for one mole of Na*, so {, = —1/3.
The analysis below holds for arbltrary valences.

e molar volumes of water v}’ ws = 18 cm?®, of Na*, vg\]d; =2.66 cm®, of K, UKS = 5.93 cm?, of clay parti-
cles, e.g. for the above smectite, Ransom and Helgeson (1994) have obtained, using the technique of
structural analogy, vy ~ 146 cm®.

The physical properties (molar mass, molar volume, density) of the species are assumed to be identical in
both phases, Eq. (2.9).

Using electroneutrality in the solid phase, the ratio of the number of moles of Na™ versus clay can be
expressed in terms of given quantities,

NNaS NKS NCIS .
Nes +{a NNaS> = —C(e-

Qm+& (D.1)

The initial void ratio is

o Vaw + (1 — o) Vs + Vaaw + Vew + Vo (D.2)
Ves + 0Vus + VNas + Vs + Vais . .
Since the pore water is distilled water, the molar fractions of ions in fluid phase are very small. Also the
molar fractions of CI~ is assumed to be negligible in the solid phase as well. The ratio of the number of
moles of clay and absorbed water can be approximated in terms of now known quantities,

Nuw M

NCSN N_W.Z—"_l_a_ae UE?VVV) (D3)

N, (M) | Nyas (,M) | Ngs (M) ' '
WSy + /\T,\iss (vNaS + NESS Uks ) e

Using the definition (2.10) of xys and again electroneutrality in the solid phase, the molar fraction of ab-
sorbed water is obtained as
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1 N, . Nks Nna Ncis Nna
__l+_S<1_C+<_C_K> KS NS+(1_&> Cls Ns>7 (D.4)
Xys Nys {Na {Na / NNas Nes {Na /) NNas Nes
from which the other molar fractions are deduced,
N, Nn: N,
Xes = ]Wixw& XNas = %xc& XKs = N;(;xl\la& (D-S)

In a unit volume of porous medium, the number of moles of absorbed water is, using (D.4),

e 1 1

e Ty

Ns ~ (D.6)

from which the volume and mass of absorbed water per unit volume of porous medium can be estimated,
namely vys = NysvMs and my,s = NwsmfNM). The volume and mass of free water are equal to their counter-
parts in the solid phase times Ny /Nys.

The number of moles of the other species is known from the above derivations. The following molar
masses are needed to estimate the initial masses: m(M = 18 g, mﬁ? =23g, m%v[) =391g, m(cl\f) =35.5gand
mM = 382 g for the above anhydrous smectite which is used as an approximative reference for the sim-
ulations presented in this work.

Once the molar fractions in the solid phase are known, the data of the total molar fraction of ions
1 — xyw, the equilibrium constant (3.35), and the electroneutrality condition provide the individual molar
fractions of ions in pore water,

1 1 — Xww XKS
XNaw = —~ 17«%’ XKw = KeqixNaWa Xciw = XNaw + Xgw. (D-7)
_Cc + Keq ¥Nas XNa$

Notice that, even if these molar fractions are very tiny, their ratio is not arbitrary.

As an alternative information to that provided by the void ratio, one might use the specific area, that
provides the mass of absorbed water per unit mass of solid as the product of the size of the double layer,
times the specific area, times the density of water.

The model uses interpolation between two extreme situations, one in which the fluid phase is distilled
water and the other where it is salt saturated. Once the initial condition corresponding to distilled pore
water has been obtained, the state of the solid phase in equilibrium with pore water saturated by a salt is
obtained simply by solving the equations of equilibrium in terms of the chemical potentials of species that
can transfer or, for the simplified model, in terms of the chemical potential of water and of the chemical
activity.
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